Effect of an Internal Heat Exchanger on Performance of the Transcritical Carbon Dioxide Refrigeration Cycle with an Expander

نویسندگان

  • Zhenying Zhang
  • Lili Tian
  • Yanhua Chen
  • Lirui Tong
چکیده

The effect of the internal heat exchanger (IHE) on the performance of the transcritical carbon dioxide refrigeration cycle with an expander is analyzed theoretically on the basis of the first and second laws of thermodynamics. The possible parameters affecting system efficiency such as heat rejection pressure, gas cooler outlet temperature, evaporating temperature, expander isentropic efficiency and IHE effectiveness are investigated. It is found that the IHE addition in the carbon dioxide refrigeration cycle with an expander increases the specific cooling capacity and compression work, and decreases the optimum heat rejection pressure and the expander output power. An IHE addition does not always improve the system performance in the refrigeration cycle with an expander. The throttle valve cycle with IHE provides a 5.6% to 17% increase in maximum COP compared to that of the basic cycle. For the ideal expander cycle with IHE, the maximum COP is approximately 12.3% to 16.1% lower than the maximum COP of the cycle without IHE. Whether the energy efficiency of the cycle by IHE can be improved depends on the isentropic efficiency level of the expander. The use of IHE is only applicable in the cases of lower expander isentropic efficiencies or higher gas cooler exit temperatures for the refrigeration cycle with an expander from the view of energy efficiency. OPEN ACCESS Entropy 2014, 16 5920

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance Investigation of Two Two-Stage Trans-Critical Carbon Dioxide Refrigeration Cycles Ejector and Internal Heat Exchanger

In the present work, the performances of improved two-stage multi inter-cooler trans- critical carbon dioxide (CO2) refrigeration cycles with ejector and internal heat exchanger have been examined. In the new improved cycles, an internal heat exchanger is append to the cycles. Also, second inter-cooler in improved cycles, cooled with the refrigeration of the cycle, so that in first c...

متن کامل

The Internal Heat Exchanger in a Transcritical Co2 Refrigerator: an Experimental Study

The classical substances as Hydrochlorofluorocarbons (HCFCs) used as working fluids in the vapour compression plants have to be replaced by new substances because of their ozone depletion potential and their greenhouse effect. Carbon dioxide (CO2) is non-toxic, non-flammable, has zero ozone depletion potential and negligible global warming potential as refrigerant. Referring to a transcritical ...

متن کامل

Saving Energy by Exergetic Analysis of MTP Process Refrigeration System

The exergetic analysis is a tool that has been used successfully in many studies aiming a more rational energy consumption to reduce the cost of processes. With this analysis, it is possible to perform an evaluation of the overall process, locating and quantifying the degradation of exergy. This paper applies exergy approach for analyzing the heat exchanger network design and refrigeration of M...

متن کامل

Transcritical carbon dioxide heat pump systems: A review

Carbon dioxide is a safe, economic and environmentally sustainable refrigerantwhich can be used in heat pump and refrigeration systems. Research into the performance and benefits of a transcritical heat pump cycle using carbon dioxide began in the early 1990s. Theoretical and experimental research, as well as commercial system development, has improved transcritical system performance to a leve...

متن کامل

Transient Simulation of a Transcritical Carbon Dioxide Refrigeration System

Transient simulations of refrigeration cycles are crucial for evaluating new refrigerants. Previously developed transient simulation tool was capable of simulating refrigeration systems using refrigerants R22 and R134a and was validated with experimental data; however, incorporating non-traditional refrigerants such as R744 (carbon dioxide) change the cycle operation beyond the capabilities of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Entropy

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2014